
 An Example of Integration of Java GUI

Desktop Technologies Using the Abstract

Factory Pattern for Education Purposes

Ana Korunović ∗, Siniša Vlajić ∗∗

Keywords: Design patterns, Graphical user interface, JavaFX, Swing

Abstract: The integration of Java GUI desktop technologies (Swing and JavaFX),

using the Abstract Factory pattern, is explained in this paper. An overview of the

basic features of Swing and JavaFX technologies is given, as well as the design pattern

concept with an emphasis on the Abstract Factory pattern. In our study example, we

have shown how to integrate the existing software system based on the Abstract

Factory Pattern and Swing GUI technology with JavaFX GUI technology in a

relatively simple way. The integration aims to explain to the students of the Faculty of

Organizational Sciences (FON), University of Belgrade, in the course Software

Patterns, the application of software patterns in connecting different GUI

technologies.

1. INTRODUCTION

When developing software systems, it is very important to create a flexible and

sustainable architecture. The architecture consists of interconnected components that are

linked to each other via their interfaces [1]. Software system architectures can be

implemented using macro-architecture patterns (Enterprise Component Framework (ECF),

Model-View-Controller (MVC), etc.) and micro-architecture patterns (GOF design

patterns) [1,2]. GOF (Gang of Four) design patterns represent generic solutions that can be

applied in solving a number of similar problems. These patterns are divided into three

groups: creational, structural, and behavioral patterns. The Abstract Factory pattern used

in this paper is one of the creational design patterns.

The architecture of the software system can be divided into client-side (frontend) and

server-side (backend). The frontend part of the software system consists of graphical forms

∗ Ana Korunović is with the Faculty of Organizational Sciences, University of Belgrade, Serbia (phone: 381-

64-3320472; e-mail: ak20223702@student.fon.bg.ac.rs).

∗∗
Siniša Vlajić is with the Faculty of Organizational Sciences, University of Belgrade, Serbia (phone: 381-69-

8893133; e-mail: sinisa.vlajic@fon.bg.ac.rs).

4 ETF Journal of Electrical Engineering, Vol. 29, No. 1, 2023.

and form controllers. Screen forms can be implemented using various GUI (Graphical User

Interface) technologies. In this paper, the Java GUI libraries Swing and JavaFX were used

to create a graphical user interface. Swing and JavaFX represent two heterogeneous

technologies that can be used together when implementing a graphical user interface. Both

technologies are based on the MVC pattern and tend to separate the graphical user interface

from the application logic [3].

To explain the integration of Swing and JavaFX GUI technologies, a software system [4]

was created in the Java programming language connected to a MySQL database. The

above-mentioned integration was performed in order to explain the use of software patterns

in connecting different GUI technologies to the students of the Faculty of Organizational

Sciences (Information Systems and Technologies program), University of Belgrade, as part

of the elective course Software Patterns (4th year of study).

The work consists of six chapters. The introduction to the topic and the goal of this paper

is followed by an explanation of the basic concepts of Swing and JavaFX GUI technologies

(chapters two and three). Chapter four provides a general definition of the pattern and an

explanation of the Abstract Factory pattern. The fifth chapter explains the software system

in which the integration of Swing and JavaFX GUI technologies was performed using the

Abstract Factory pattern. The sixth chapter contains concluding remarks.

2. SWING

The creation of a graphical user interface in Java is made possible by the use of Java

Foundation Classes (JFC), which consist of a group of libraries [5]. JFC consists of the

Abstract Window Toolkit (AWT), Java 2D, and Accessibility libraries. The inability to

change the appearance of graphical components, platform dependency, non-compliance

with the MVC pattern in AWT components, and scarcity have led to the development of

Swing [6]. Swing technology was introduced to address the shortcomings of the AWT

technology and represents its further development. Although Swing is more advanced than

AWT components, it is important to emphasize that event handling is done in the same way

in both libraries.

Swing components are written in the Java programming language, and it is possible to

change the look of the components and make them independent of the specific

implementation platform (pluggable-look-and-feel) [5]. In the context of patterns, Swing

supports the Model-View-Controller (MVC) pattern, which separates the control of the

display of components on forms (View), the way the components react in interaction with

the user (Controller), and the state that the components contain (Model).

Developing a graphical user interface with the Swing library requires knowledge of

Components and Containers (Figure 1). Containers are components whose purpose is to

connect a group of components, such as JButtom, JComboBox, and JTextField. Swing uses

higher-level containers that inherit the Container and Component classes from the AWT

library. These containers are not able to change their form and depend on the platform

operating system [5].

A. Korunović, S. Vlajić: An example of integration of Java GUI desktop

technologies using the Abstract Factory pattern for education purposes

5

Fig. 1. An example of a Swing library class hierarchy [3]

3. JAVAFX

Swing components are designed for developing graphical user interfaces for desktop

applications, while JavaFX technology is also used for building rich Internet and mobile

applications [7]. This library was developed by Sun Microsystems and is based on the Java

programming language. JavaFX also introduces Java programming language features such

as generics, lambda expressions, annotations, and multithreading. An advance over Swing

technology is FXML, a scriptable language based on XML. FXML describes the user

interface and allows the definition of controllers that respond to events. The logic contained

in FXML allows the controller to respond to events in a timely manner without

communicating with the user interface, giving rise to the MVC architecture [8].

The graphical user interface in JavaFX is built as a collection of nodes that form a tree

[9]. Nodes are an integral part of the scene, i.e., the stage (Figure 2), and can be 2D and/or

3D objects, images, video and/or audio recordings, labels, text input fields, and the like

[10].

Fig. 2. The relationship between components and nodes in JavaFX [7]

6 ETF Journal of Electrical Engineering, Vol. 29, No. 1, 2023.

The javafx.stage.Stage component represents a parent container created by a particular

platform. A stage is a scene consisting of a single node or a tree of graphical user interface

nodes (Figure 3).

Fig. 3. JavaFX class diagram [7]

JavaFX is controlled by the JavaFX platform, which creates objects and threads the

application [11]. All changes to the stage and nodes must be made within the JavaFX

application thread in order to be displayed to the user.

4. ABSTRACT FACTORY PATTERN

Software patterns establish a relationship between a context, a system of recurring forces

in that context (problem), and a software configuration that enables those forces to establish

appropriate relationships (solution) [1]. Patterns provide a general solution to a group of

problems when developing a software system, that is, the reusability of once written

program code. Software patterns can be divided into three-level patterns, anti-patterns, and

meta-patterns. Of the three-level patterns, GOF (Gang of Four) design patterns attract

special attention.

The Abstract Factory pattern is one of the creational patterns within the family of 23

GOF design patterns. Abstract Factory defines an interface for creating related and

dependent objects (products) without specifying concrete classes (Figure 4). This type of

encapsulation prevents the client from having direct access to specific products and relieves

them of the responsibility of creating them. The client manipulates instances by reference to

AbstractFactory, manages and monitors the process of creating a complex product, and

creates a complex product while AbstractFactory determines how to create parts of a

complex product [1].

A. Korunović, S. Vlajić: An example of integration of Java GUI desktop

technologies using the Abstract Factory pattern for education purposes

7

Fig. 4. The structure of the Abstract Factory pattern [2]

The advantage of using the Abstract Factory pattern is the isolation of the concrete

products from the client, which allows better control of instantiation. Also, it is easy to

change the product since the specific product is only in one place in the software system.

The AbstractFactory interface limits the collection of products that can be created, so

adding a new and different implementation requires changing the interface and the

previously created concrete products [2].

5. INTEGRATION OF SWING AND JAVAFX TECHNOLOGIES

USING THE ABSTRACT FACTORY PATTERN

The idea of integrating two heterogeneous GUI technologies arose from the desire to give

students of FON a practical example of how to use software patterns (Abstract Factory)

when combining different GUI technologies (Swing and JavaFX).

It is important to emphasize that the idea of our teaching approach is not only to show

students the final structure of sustainable software systems. First, students should learn

about the process of transforming unsustainable software systems into sustainable ones

using software patterns, so that they can then independently design and implement their

own study examples.

In our study example, a software system [4] was developed for processing students' exam

registration. The elements of the system are a screen form with fields for receiving and

displaying data, a database broker, and a controller for exchanging data between the

controller and the database broker. The Abstract Factory Client oversees the process of

making a complex product and creates the complex product, while the Designer is

responsible for creating parts of the complex product. The software system of the study

example is based on the software system (Figure 5) where the Abstract Factory pattern was

applied in the development of the Swing GUI Java application.

8 ETF Journal of Electrical Engineering, Vol. 29, No. 1, 2023.

Fig. 5. Class Diagram - Swing GUI Technology

Figure 5 shows that the Client initiates the development of a complex product and

contains a reference to the Designer, i.e., the AbstractFactory. Implementations of the

Designer interface create their own combinations of parts of a complex product.

The sustainability of the structure was achieved by introducing abstractions and moving

the event processing logic to the controller via the screen form. This overcomes Swing's

shortcoming of automatically generating program code and forcing the programmer to

place the logic for responding to events in screen forms, resulting in inflexible and

unsustainable structures.

The abstractions in the application are classes: Panel, ScreenForm, Controller, and

DatabaseBroker. The methods contained in the abstract classes Panel and ScreenForm

refer exclusively to styling the appearance of the user interface, the setup of data input

fields, and components that can react to events. By moving event listeners outside the user

interface, the application logic is moved to a higher level, namely the controller level. In

this way, the three-tier architecture of the application, which tends to the MVC pattern, was

achieved (Figure 6).

Fig. 6. Three-tier architecture of the software system [12]

A. Korunović, S. Vlajić: An example of integration of Java GUI desktop

technologies using the Abstract Factory pattern for education purposes

9

The three-tier architecture of the application consists of the following elements [12]:

• The user interface was developed using Swing technology. On the screen forms it

is possible to enter a new exam application, change, search and delete an

existing application;

• The application logic layer contains the controller, which is the link between the

user interface and the database broker. The application logic controller is

responsible for placing listeners on-screen forms and responding to events

raised by those listeners by calling methods of the database broker. The

database broker contains methods that perform operations with the database

using domain-general objects;

• The database level contains data on exam applications;

By introducing abstractions, it is possible to separate various screen forms and panels

from the control of the application logic. The use of patterns eliminated places in the

program that were difficult to maintain and update. The result is generic components that

can be reused in the development of other similar software systems.

The idea of developing an existing system evolved even though the software system

described earlier gave students insight into how to recognize the places of mutable and

immutable program code and when is the right time to include abstractions and generic

structures. The goal was to integrate the existing system (Figure 5) with JavaFX GUI

technology to enable the implementation of screen forms using JavaFX technology. By

integrating Swing and JavaFX using the Abstract Factory pattern (Figure 7), a matrix

structure of screen forms and different GUI technologies was created.

Fig. 7. Class Diagram - Swing and JavaFX GUI technologies

10 ETF Journal of Electrical Engineering, Vol. 29, No. 1, 2023.

The structure created using patterns is easily expandable, but the incorporation of new

technologies requires the adaptation of certain components. The differences in the

implementation of Swing and JavaFX require that the abstract class Panel be replaced with

the interface IPanel, thus achieving a higher level of abstraction. In the abstractions, there

are no longer references to the classes of the javax.swing package, but the superclass of all

Object classes is used. By creating the Form interface, the abstraction level of screen forms

has been raised.

ScreenForm3 and Panel3 differ from other forms and panels by the technology they use.

ScreenForm3 inherits the javafx.application.Application and contains

start(javafx.stage.Stage) method. Inside this method, an FXML file loads. Panel3 contains

an FXML annotation declaring the controller members of the javafx.scene.control package

initialized by FXMLLoader.

Minor changes were made at the controller level, but the core remained the same. The

event processing logic was moved from the screen forms to the Controller, the Software

System includes a reference to the parts of the complex product, and the decision about

instantiation of the parts of the complex product is made by the Designer.

6. CONCLUSION

For a software system to be sustainable and efficient, it must be built on a stable

foundation. The core of the software system should be such that it can allow adding new

and changing existing functionalities, as well as adding new technologies, with minimal

changes. This is made possible by using the Abstract Factory pattern, which is based on the

MVC pattern. In our study example, we have shown how, relatively easily, the existing

software system (Figure 5) can be integrated with JavaFX GUI technology (Figure 7).

The further research directions refer to the extension of the observed matrix structure

achieved by integrating JavaFX and Swing on the one hand and different implementations

of screen forms on the other hand. Namely, a further step in the development of this

structure will be made by the introduction of new Java graphic user interface technologies.

In this way, there will be an integration of different desktop, Android, and web GUI

technologies in the application. The goal of the research is to obtain a program code

generator that, based on the choice of the desired technology and the appearance of the

screen forms, will produce a program code that meets the defined requirements.

REFERENCES

[1] S. Vlajić, Softverski Paterni, ISBN: 978-86-86887-30-6, Zlatni Presek, 2014.

[2] E. Gamma, R. Helm, R. Johnson, R. E. Johnson & J. Vlissides, “Creational Patterns,“ in Design

patterns: elements of reusable object-oriented software, Pearson Deutschland GmbH, 1995.

[3] 3K. Sage, Concise Guide to Object-Oriented Programming, Springer International Publishing,

2019.

[4] A. Korunović. (2022). SoftwareSystem-FON [Source code].

https://github.com/AnaKorunovic/SoftwareSystem-FON.

[5] S. Vlajić, D. Savić, V. Stanojević, I. Antović & M. Milić, Napredne Java tehnologije, ISBN:

978-86-86887-03-0, Zlatni presek, 2008. S. Vlajić, Softverski Paterni, ISBN: 978-86-86887-30-

6, Zlatni Presek, 2014.

A. Korunović, S. Vlajić: An example of integration of Java GUI desktop

technologies using the Abstract Factory pattern for education purposes

11

[6] H. Schildt, Java The Complete Reference, 7th ed., The McGraw-Hill Companies, 2007.

[7] Y. D. Liang, “JavaFx Basics,” in Introduction To Java Programming, Comprehensive Version,

Pearson Education India, 2009, pp 535-584.

[8] G. Kruk, O. Alves, L. Molinari, E. Roux, " Best practices for efficient development of JavaFX

applications," Proceedings of the 16th International Conference on Accelerator and Large

Experimental Control Systems, ICALEPCS 2017, Barcelona, Spain, 2017.

[9] K. Sharan, Beginning Java 8 APIs, Extensions and Libraries: Swing, JavaFx, JavaScript, JDBC

and Network programming APIs, Apress, 2014.

[10] P. Xiao, “Java programming for Windows Application,“ in Practical Java programming for

IoT, AI, and Blockchain, 1st ed., John Wiley & Sons, Inc., 2019, pp 99-127.

[11] S. S. Chin, J. Vos, J. Weaver, “JavaFx Fundamentals,” in The Definitive Guide to Modern Java

Clients with JavaFX, Apress, 2019, pp 33-80

[12] S. Vlajić, Projektovanje Softvera (Skripta – Radni material), Dr Siniša Vlajić, 2020.

