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ABSTRACT: 
General performance analysis of the instantaneous frequency (IF) estimators, for an 
arbitrary frequency modulated (FM) signal, is presented. Shift covariant class of 
quadratic time-frequency distributions as IF estimators are considered. The 
expressions for the IF estimator variance in the cases of white stationary and white 
nonstationary additive noises are derived. As special cases of this analisis, the well 
known results for the Wigner distribution and linear FM signal, and for the 
spectrogram of signals whose IF may be considered as a constant within the lag 
window, are presented. In addition, analysis of the linear FM signal is performed in 
the cases of commonly used distributions, such as spectrogram, Choi-Williams, Born-
Jordan. The quite simple expression for variance of spectrogram of this signal (that is 
highly signal dependent) is derived. The presented expressions are checked 
statistically. It has been shown that the reduced interference distributions outperform 
the Wigner distribution, but only in the case when the IF is constant or its variations 
are small.  
 
1. INTRODUCTION 
 
Instantaneous frequency (IF) estimation is an important research topic in signal analysis [1], 
[2], [14]-[24], [29]-[32]. There are several approaches to the IF estimation. Time-frequency 
distributions (TFD) based approach is one of them [14]-[18], [20], [29]-[32]. The basis for 
using TFDs' in IF estimation is their first moment property, [2], [3], [10]. The first-order 
TFD moment, with respect to frequency, provides an acceptable IF definition for a time-
varying signal. The TFD, used to recover the IF as its first moment, provides an unbiased 
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estimate. The presence of noise, however, leads to a serious degradation of the first moment 
estimate due to the absence of any averaging in its definition. In other words, the first 
moment may have a high statistical variance even for high values of input signal-to-noise 
ratio, [24]. However, TFDs concentrate the energy of the considered signal at and around 
the IF in the TF plane, [2], [20], [24], [25], [29]. Consequently, as a natural alternative for 
the first moment, the peak detection of the TFDs' is used as an IF estimator. 
 The IF estimation based on TFDs maxima is analyzed in [2], [4], [14]-[18], [19], [21], 
[23], [24], [29]-[32]. Out of the quadratic class of distributions only the most frequently 
used ones are considered there: the Wigner distribution for linear frequency-modulated 
(FM) signal, and the spectrogram for signals with constant frequency. It has been shown 
that, in the case of noisy signals, this estimate highly depends on the signal to noise ratio, as 
well as on the window length. 
 In this paper we present a general analysis of an arbitrary shift covariant quadratic 
TFD as an IF estimator, for any frequency modulated signal. The exact expressions for the 
IF estimator variance in the cases of white stationary and white nonstationary noises are 
derived. The corresponding expressions for some frequently used TFDs from the Cohen 
class (CD) are obtained as special cases, as well. We presented the well known results for 
the Wigner distribution and linear FM signal, and for the spectrogram of signals whose IF 
may be considered as a constant. In addition, we have derived the variance expression for 
the spectrogram of a linear FM signal. This signal is considered in the cases of other 
commonly used TFDs, such as Born-Jordan and Choi-Williams distributions. It has been 
shown that the reduced interference distributions outperform the Wigner distribution, but 
only in the case when the IF is constant or its variations are small. For highly nonstationary 
signals the Wigner distribution can produce better results. 
 The paper is organized as follows. After this introduction the IF estimator is defined and 
the problem is described. In Section III the analysis of the estimation error is performed. In 
Section IV the variance of the estimation error in the cases of commonly used quadratic 
TFDs are represented. The obtained results are checked numerically and statistically in 
Section V. 
 
2. BACKGROUND THEORY 
 
Consider discrete-time observations,   
 x nT f nT nT( ) ( ) ( )= + ε , f t A t j t( ) ( ) exp( ( )),= φ  (1) 

where n is an integer, T is a sampling interval, ε( )nT  is a white noise, and A t( )  is a slow 
varying amplitude of the analyzed signal. By definition, [5], [18], [20], [29], the IF is a first 
derivative of the signal phase, ω φ φ( ) ( ) ( )t t d t dt= ′ ≡ . Assume that ω( )t  is an arbitrary 

smooth differentiable function of time with bounded derivatives | ( )| | ( )|( ) ( )ω φr rt t= ≤+1  

M tr ( ) , r > 1. 

 General form of the quadratic shift-covariant TFD's, in discrete-time domain, is defined 
by: 

 C t mT nT x t mT nT x t mT nT ex h h
j nT

mn
( , ; ) ( , ) ( ) ( ) ,ω ϕ ϕ ω= + + + −∗ −

=−∞

∞

=−∞

∞
∑∑

2  (2) 
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where ϕ ϕh mT nT T h mT h nT h( , ) ( ) ( , )= 2 , and the time-lag kernel ϕ τ( , )t  is a symmetric 

function in both time and lag axes. Suppose that ϕ τ( , )t  has a finite length along time and 

lag directions, ϕ τ( , )t = 0, for | |t > 1 2  or | |τ > 1 2. It means that ϕh mT nT( , )  has a finite 

length along both directions denoted by h, h>0. Note that h is used in definition of the CD 
in order to localize the estimate. 
 Let us analyze the CD of the signal f(t). Using the fact that the signal has a slow-varying 
amplitude f t mT nT mT nT A t j t mT nT mT nTh h( ) ( , ) ( ) exp[ ( )] ( , )+ ± ≅ + ±ϕ φ ϕ , and expa-

nding φ( )t mT nT+ ±  into the Taylor series around t (up to the third order therm), we get: 

 C t A t mT nT ef h h
mn

j t nT t mTnT t mT nT( , ; ) ( ) ( , ) [ ( '( )) ( ) ( , , )]( )
ω ϕ ϕ ω φ φ=

=−∞

∞

=−∞

∞ − − − −
∑∑

2 2 2 2 ∆φ  (3) 

where ∆φ( , , )t mT nT  is the residue of the phase which may be represented as: 
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Note that TFDs from CD would have a maximum at ω φ= ' ( )t  if φ( ) ( )s t = 0  for s≥ 2 . 

The IF estimate may be defined as a solution of the following problem, [18], [24], [29]:   
 $ ( ) arg[ max { ( , ; )}],ω ω ϕ

ω ω
h

Q
x ht C t=

∈
 (5) 

where Q Tω ω ω π= ≤ <{ : | | / ( )}0 2  is a basic frequency interval. The estimation error, 

produced at a time-instant t, is: 
 ∆ $ ( ) ( ) $ ( ).ω ω ωh ht t t= −  (6) 

 
3. ANALYSIS OF THE ESTIMATION ERROR 
 
Since the estimate of IF $ ( )ωh t  is defined by the stationary point of C tx h( , ; )ω ϕ , the 

$ ( )ωh t  is determined by zero value of ∂ ∂ωC tx h( , ; ) /ω ϕ . In [12], the linearization of 

∂ ∂ω =C tx h( , ; ) /ω ϕ 0  with respect to the small estimation error, ∆ $ ( )ωh t , the residual of 

the phase deviation, ∆φ , noise ε  and squared noise ε2 , is done. There, the estimation 

error (6) is derived in the following general form: 

 ∆ $ ( )
( )

( ( )
( )

),ωh
h

h
ht

R t
P t

Q

A t
= +1

2 2 2
 (7) 

 where: 

 R t mT nT nT eh h
j t mTnT
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( ) ( , )( ) ,

( ) ( )=
=−∞

∞

=−∞

∞
∑∑ ϕ φ2 2 2

 (8) 
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while |0  means that the preceding derivatives are calculated at the point ω φ= ' ( )t , ε = 0 , 

and ∆φ( , , )t mT nT = 0. 

 In order to get the exact value of the IF estimator variance, the term 
∂ ∂ωC tx h( , ; ) / |ω ϕ δε0  will be expressed by using the inner-product form of CD, [7]: 

 C t mT nT x t mT e x t nT ex h h
j mT j nT

mn
( , ; ) ~ ( , )[ ( ) ][ ( ) ] ,ω ϕ ϕ ω ω= + +− − ∗

=−∞

∞

=−∞

∞
∑∑  (12) 

where ~ ( , ) (( ) , ( ) )ϕ ϕh hmT nT m n T m n T= + −2 2 . Consequently, 
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 We may conclude that for the white noise ε( )nT , 

E
C t

E
C tx h x h∂
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and consequently, E Qh{ } = 0 . Thus, the estimation variance is: 

 var{ $ ( )}
var{ }

( ) ( )
,∆ωh

h

h

t
Q

A t R t
=

16 4 2
 (14) 

where R th( )  is defined in (8). By expanding exponential function exp( ( )( )( )j t mT2 2φ ⋅  

( ))nT  into a power series, exp( ) !x x ii
i= =

∞Σ 0 , we may represent R th( )  as: 

 R t
t

i
B i ih

i i

i
h( )

( ) ( ( ))

!
( , ),

( )
= − +

=

∞
∑

1 2

2
2 2 2
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where: 

 B k l mT nT mT nTh h
k l

mn
( , ) ( , )( ) ( ) .=

=−∞

∞

=−∞

∞
∑∑ ϕ  (16) 

For a relatively small 2 12φ( ) ( )t << , we can write: 

 R t B t Bh h h( ) ( , ) ( ( )) ( , ).( )≅ −0 2 2 2 42 2φ  (17) 

Note that when h → 0 , T → 0 , h T → ∞ , we have: 

 B k l h b h t t dtdh
k l

k l
k l k l( , ) ( , ) .,

/

/

/

/
→ =+ +

−−
zz ϕ τ τ τ
1 2

1 2

1 2

1 2
 (18) 
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Now, we will derive expressions for variance, given in general by (14). 
 
The IF estimator variance 
In the sequel the nonstationary, complex-valued, white, Gaussian noise ε( )nT  with auto-

correlation R t mT t nT I t mT m nεε δ( , ) ( ) ( )+ + = + − , I t( ) ≥ 0  will be considered. The sta-

tionary noise ε( )nT  is obtained as a special case of the nonstationary one with I t( ) = σε
2 . 

Proposition 1: Let $ ( )ωh t  be a solution  of  (5). For small estimation error and an FM 

signal f t A t j t( ) ( ) exp( ( ))= φ  the IF estimators' variance is:   

 var{ $ ( )}
( ) ( )

[ ( , ;| | ) ( , ;
~

)],∆ Φω ϕ ςh
h

I h ht
A t R t

C t C= +1

8
2 0 0 0

4 2
2

1
 (19) 

where C hς ( , ,
~

)0 0 Φ  is a quadratic distribution (with the new kernel 
~ ~

( )Φ Ψh h I t= − ⋅  

⋅
∗~Ψh  of the predefined signal ς φ φ( ) ( ) exp[ ( ' ( ) ( ))]t f t j t= − +0 0  at the origin of time-

frequency plane, and 
~

. ~Ψh n m hA= ∗− ϕ . Here, ~ϕh  is a matrix with elements 

~ ( , )ϕh mT nT  while An m−  is a matrix with elements A m n n m( , ) = − , for m n, =  

1 2, ,...,N  (N represents assumed finite limits for m,n). The operator .∗  denotes element-

by-element matrix multiplication. The I t I t nT m n( ) ( ) ,= + δ  is a diagonal matrix, with 

I t nT( )+  being its elements. Also,C tI h( , ;| | )0
1

2ϕ  represents a quadratic distribution of 

I t( )  with a new kernel | ( , )|ϕh mT nT
1

2 , ϕ ϕh hmT nT mT nT nT
1
( , ) ( , )( )= . 

Special case: Linear FM signal f t A t jat( ) ( ) exp( )= 2 2  corrupted by the stationary, 

white, Gaussian noise, produces the variance   

 var{ $ ( )}
( ) ( )

[ ( , ;
~

)],∆ Ψω
σ

σε
εh

h
h f ht

A t R t
W C= + −

2

4 2
2 2

8
2 0 0  (20) 

where 

 W mT nT nTh h
mn

=
=−∞

∞

=−∞

∞
∑∑ | ( , )| ( ) .ϕ 2 2  (21) 

Proof: 
Starting from the properties of the Gaussian noise ε( )nT , [22], it may be concluded that, 

 var{ } var
( , ; )

var
( , ; )

.Q
C t C t

h
x h x h=

∂
∂ω

R
S
T|
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W|

+
∂
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R
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W|

ω ϕ
δ

ω ϕ
δε ε

0 0
2  (22) 

 First term in (22) is highly signal and noise dependent. The second term is signal 
independent and time-frequency invariant for the case of stationary noise, [14]-[18], [30]. 
In the case of white, complex, Gaussian noise ε( )nT , [1], [9], [11], [18], [27], [28]-[31], 
the second term from (22) can be written in the following form:  



V.N.Ivanović et al.: The exact error analysis in the IF estimation ... 35 

 

var
( , ; )

( , ) ( , )

[ ( , ) ( , )

( , ) ( , )]

( )(

∂
∂ω

R
S
T|

U
V
W|

= ×

× + + + − + + + − +

+ + + + + + − + − ×

×

∗

=−∞

∞

=−∞

∞

=−∞

∞

=−∞

∞

∗

∗

∑∑∑∑
C t

m T n T m T n T

R t m T n T t m T n T R t m T n T t m T n T

R t m T n T t m T n T R t m T n T t m T n T

n T

x h
h h

mmnn

ω ϕ
δ ϕ ϕ

ε

εε εε

εε εε

0
1 1 2 2

1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2

1

2

2121

4

n T e j t n n T
2

2 1 2) ,'( )( )− −φ

 (23) 

where R t mT t nT E t mT t nTεε ε ε( , ) { ( ) ( )}+ + = + +∗  is the noise ε( )nT  auto-correlation 

function. 
 Special case 1: For nonstationary, complex, white noise, R t mT t nT I tεε ( , ) (+ + = +  

mT m n) ( )δ − , I t( ) ≥ 0 , we get: 
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where ϕ ϕh hmT nT mT nT nT
1
( , ) ( , )( )= . Thus, in this case, noise-only dependent part of 

variance may be represented as a quadratic distribution of I(t), with the new kernel 

| ( , )|ϕh mT nT
1

2 . 

 Special case 2: For stationary, complex, white noise, I t( ) = σε
2 , we have: 
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Note that, as h → 0 , T → 0 , and h T → ∞ , Wh  is reduced to, 

 W T W T t dtdh → =
−−
zz2 2 2 2

1 2

1 2

1 2

1 2
| ( , )| ,

/

/

/

/
ϕ τ τ τ  (26) 

where W depends on the kernel ϕ τ( , )t  type only. 

 The first term from (22) for real and symmetric kernel ϕh mT nT( , )  may be represented 

as: 
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Applying ~ ( , ) ~ ( , )ϕ ϕh hm T nT nT m T1 1=  and R t mT t nT I t mT R m nεε εε( , ) ( ) ( )+ + = + − , 

I t( ) ≥ 0 , we get: 
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where C hς ( , ; )0 0 Φ  is a quadratic distribution (with the new kernel 
~

( , )Φh m T m T1 2 =  

Φh m m T m m T(( ) ,( ) )1 2 1 22 2+ − ) of the predefined signal ς( )t  at the origin of time-

frequency (TF) plane. Note that for the linear FM signal f t A t jat( ) ( ) exp( )= 2 2 , we have 

ς( ) ( )t f t= . The general form of new kernel 
~

( , )Φh m T m T1 2  is: 

 

~
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 Special case 1: For stationary, white, complex Gaussian noise, we get: 
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For finite limits this is a matrix multiplication form, 
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[ .* ~ ] [ .* ~ ],Φh n m h m n hA A= ×− −σ ϕ ϕε
2  (31) 

where An m−  is a matrix with elements A m n n m( , ) = − , for m n N, , ,...,= 1 2 . Elements of 

matrix ~ϕh  are ~ ( , )ϕh mT nT . Let us now introduce 
~

.* ~Ψh n m hA= − ϕ . Then, because 

of symmetry and realness of the kernel ~ ( , )ϕh mT nT , ~ ( , ) ~ ( , )*ϕ ϕh hm T nT nT m T2 2= , and the 

asymmetry of matrix An m− , A An m m n− −= − , we have: 
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Thus, 
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 Special case 2: For nonstationary, white, complex, Gaussian noise, we have: 
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where I t( )  is described in the Proposition. Substituting eqs.(24) and (34), as well as 

eqs.(25) and (33) into eq.(14) proves formulas (19) and (20), respectively.     � 

 
 
4. THE SPECIAL CASES OF QUADRATIC TFD’s 
 
The expressions for IF estimator variance in the case of any TFD from CD may be obtained 
as special cases of the eqs.(19)-(20). 
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1. Pseudo Wigner distribution (WD): For this distribution ~ ( , ) ( )ϕh hmT nT w mT= ⋅  

δ( ) ( )m n w nTh+ , R t w nT Th w dh hn( ) ( ) ( )
/

/= → ⋅=−∞
∞

−∑ z1

2 2 2
1 2

1 2 τ τ τ , where w nTh( )  is the 

real and even window function. Thus, we get: 
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where w nT w nT nTh h1
( ) ( )( )=  and w nT w nT nTh h2

2( ) ( )( )= , while WDx y,  denotes cross-

Wigner distribution. For the case of stationary white complex noise, 
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where W w d w dw = − −z z4 2
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/τ τ τ τ τ τ  is the constant, dependent on window 

w( )τ . Its values for some commonly used windows are presented in Table I. Note that for 

the rectangular window w nTh( )  and the case of stationary, white, Gaussian noise, we get 

the well known expressions from [18]: 
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Conclude that var{ $ ( )}∆ωh t  is not dependent on the phase φ( )t  and its derivations in the 

case of analyzed FM signals, i.e. var{ $ ( )}∆ωh t  is constant for all values of φ( ) ( )2 t  in the 

case of linear FM signal. 

2. Spectrogram (SPEC): Here we have: ~ ( , ) ( ) ( )ϕh h hmT nT w mT w nT= . In this case the 

two parts of variance (22) have the following forms: 
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where STFT t wh( , ; )ω  represents the short-time Fourier transform, SPEC t wh( , ; )ω =  

STFT t wh( , ; )ω 2
, whereas the R th( ) , eq.(15)-(16), is: 
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and 
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Table I. The coeficients Ww , Sw , and Cw  for different window w( )τ  forms 

Window w( )τ  Rectangular Hanning Hamming Triangular 

Ww  12 54.4631 41.6581 34.2857 

Sw  12 28.1135 19.7324 19.2 

Cw  53 10 3. ⋅ −  1768 10 3. ⋅ −  2936 10 3. ⋅ −  274 10 3. ⋅ −  
 

is the r-th moment of window w( )τ . Substitution of eqs.(38)-(39) into eq.(22) produces 

variance var{ }Qh . After that, substitution of the obtained variance and eq.(40) into (14) 

gives the IF estimator variance in the case of SPEC. From eq.(38) it can be easily 
concluded that the var{ $ ( )}∆ωh t  in the case of SPEC is highly signal dependent. 

 Linear FM signal, f t A t jat( ) ( ) exp( )= 2 2 , corrupted by the stationary (or quasi-

stationary I t nT I t( ) ( )+ = ), complex, white, Gaussian noise: In this case we have 

SPEC whς ( , ; )0 0 0
1

=  and STFT t wI h( , ; )0 0
2

= . Thus, 
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while R th( )  is given by eq.(40) with φ( ) ( )2 t a= . Now, the exact IF estimation error 

∆ $ ( )ωh t  variance may be easily obtained by replacing eqs.(40) and (42)-(43) into expre-

ssion (14). 
 Since r-th moment of the window w( )τ  is very small for r > 5 , then for relatively 

small a, a ≤ 06. , var{ $ ( )}∆ωh t  can be closely approximated by the following very simple 

form (obtained by replacing i = 0 1,  into (40) and (43)): 
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are the window w( )τ  dependent constants, Table I. Note that, due to the kernel 
~ ( , )ϕh mT nT  symmetry, the same values of variance var{ $ ( )}∆ωh t  hold for negative a with 

a a→ . Conclude that in this case var{ $ ( )}∆ωh t  is not constant. It is highly signal 

dependent. As a increases, var{ $ ( )}∆ωh t  increases from the value 
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h wt
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S
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2

2 32
0for    (46) 

that is derived in literature as the spectrogram variance, [17]. Of course, it holds only for 
a = 0, while for other values of a the more general relation (40)-(44) derived in this paper 
holds. 

3. Smoothed pseudo WD (SWD): In this case we have, [3], [5]: ϕ γh mT nT( , ) = ⋅  

exp( ( ) ( ) )− −mT nT2 2α β . For α β= , ~ ( , ) ( ) ( )ϕh h hmT nT w mT w nT= , where w mTh( ) =  

γ αexp( ( ) ( ))− mT 2 2  is the Gaussian window. Consequently, the variance expression 

may be directly obtained from those in the case of spectrogram, for Gaussian window 
w mTh( ) . 

 
5. NUMERICAL IMPLEMENTATION 
 
Obtained results for variance are checked statistically and presented in Figs.1a)-c). The 
following quadratic TFDs are considered: 
 pseudo WD, with the Hanning window w( )τ ; 
 spectrogram; 

 Born-Jordan (BJD), ϕh nT
mT
nT

mT nT( , ) rect=
+

1
2 1 2 ; 

 Choi-Williams distribution (CWD), 

ϕ σ πσ
π

σ
h nT

mT
nT

mT nT( , ) exp[ ( ) ],= ⋅ − =
+

⋅
2

1
1 2

2 2 . 

 The general expression (20) for variance is used in the numerical analysis. Linear FM 

signal f t j at( ) exp( )= − 16 2π  corrupted by the stationary noise with variance σε = 0 25.  is 

analyzed. The values of φ( ) ( )2 t a=  with a ∈[ , ]0 1  are considered in the case of spectro-

gram, while a ∈[ , . ]0 05  in the case of other TFDs, when the oversampling is necessary. The 

signal is considered within the time interval t ∈ −[ , ]2 2  with the sampling period T = 1 64. 

The symmetric kernels, − ≤ ≤h mT nT h2 2( ),( ) , with h = 1 width (i.e. 64 samples kernel 

width) are used. Note that the results for the CWD highly dependent on the parameter σ. 
Thus, any comparison is relative. Here we have chosen the parameters according to the 
results from [25]. 
 A very high agreement of the theoretical results (thick line) and the statistical data (thin 
line) can easily be noted from Fig.1. Theoretical values are produced by the derived 
expressions (19)-(20), while the statistical data are obtained by running 128 simulations. 
Typical error functions for one realization are given in Fig.2. Note that var{ $ ( )}∆ωh t  in 

BJD and CWD cases increases (as in the case of SPEC) as a increases. For small a → 0  
they have lower variance than the PWD, while by increasing a they perform worse than the 
PWD. These conclusions are expected since the RID distributions significantly reduce no- 
 



40 ETF Journal of Electrical Engineering, Vol. 9-10, No. 1, October 2001. 

 
Fig.1. IF variance obtained theoretically (thick line) and statistically (thin line) for different 

normalized values of φ( ) ( )2 t a= ; a) SPEC, b) BJD and pseudo WD, c) CWD and pseudo 

WD. Note that a = 0 corresponds to the pure sinusoid, while value of a at the ending 
interval point corresponds to the diagonal in the considered time-frequency domain. 

 
 

ise energy located far from the θ,τ axes. For the signals whose ambiguity function lies 
along the θ,τ axes (as in the case of linear FM signals with a → 0) the RID distributions do 
not degrade signal representation. On the other hand, for linear FM signals with larger 
values of a, the RID distributions significantly degrade representation of the analyzed 
signal. Consequently, in this case it may happen that the TFDs from RID class have worse 
performance than the WD. A decrease in variance for the BJD, for a between 0.3 and 0.4, is 
due to its pseudo form. Namely, considering finite support of the BJD a significant kernel 
values can be truncated since they are the θ-τ domain oscillatory. They can cause variance 
oscillations, as well. 
 
 
6. CONCLUSION 
 
In this paper we have performed IF estimation analysis based on the general quadratic shift-
covariant class of TFD's. The exact bias and variance expressions are derived. It is shown 
that the IF estimation variance is closely related with the non-noisy signal's distribution. 
The expressions in the cases of most frequently used TFDs are obtained as special cases of 
the general analysis. The obtained results are proved numerically and statistically. 
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Fig.2. The IF estimation error in the cases of PWD (thick solid line), CWD (dashed line), 

BJD (dotted line), and for the different values of a: a) a = 0, b) a = 025. , c) a = 05. . 
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